Федеральное государственное бюджетное учреждение науки Институт оптики атмосферы им. В.Е. Зуева Сибирского отделения Российской академии наук (ИОА СО РАН)

Лаборатория мониторинга парниковых газов атмосферы

Развитие лидарных методов измерения концентрации парниковых газов в атмосфере и некоторые результаты мониторинга

Зав. ЛМПГ Садовников Сергей Александрович

Москва – 2024

Задачи проекта

- 1. Разработка лидара дифференциального поглощения для измерения концентрации метана
- 2. Мониторинг концентрации парниковых газов в разных природных зонах Западной Сибири с помощью шести высотных мачт, оснащенных в рамках Межправительственного Российско-Японского соглашения
- 3. Создание автомобиля-лаборатории для измерений концентрации парниковых газов при обслуживании мачт, указанных в п.2, по маршруту поездки с целью выявления мезомасштабных неоднородностей распределения газов и выделения антропогенных источников, находящихся на территории Западной Сибири
- 4. Исследование особенностей динамики парниковых газов в фоновом, пригородном и городском районах с целью определения вкладов антропогенного и природного источников на основе измерений на TORстанции, в обсерваториях «Фоновая» и «Базовый экспериментальный комплекс» (БЭК)

Состояние проблемы							
	IPDIAL	TDLAS,	OPO/OPA	DOAS/IP	IPDIAL	DIAL	DIAL,
Лидар	трассовый	трассовый	прразр.	трассовый	трассовый	лидар,	лидар,
	измеритель,	измеритель,	лидар,	измеритель,	измеритель,	Shibata,	Refaat, CIIIA
Параметр	Новосибирск,	Фрязино, РФ	Neuchatel,	Quebec, Канала [4]	Palaiseau,	Япония [6]	[7]
	PΦ [1]	[2]	Швейцария [3]		Франция [5]		
Порориций	Nd:YAG		NAVAG	Nd:YAG	Nd:YAG	YAG:Nd	
лазерный	OPO			OPO	OPA (PPLN	OPG/OPA	Ho:Tm:YLF
источник	(LiNbO ₃)	усилитель	OPO/OPA	(PPLN)	и КТР)	(QPM)	
п	20.424				2.05;		
Длины волн,	2.9-4.24;	1.65	3.0–3.5	1.47–3.8	2.29;	1.6	2
МКМ	1.41–1.85				2.06		
Энергия в	3_40	3 BT	12	0.15-	16_20	2_20	175/6
импульсе, мДж	5-40	5 D1	12	0.175	10-20	2-20	17.570
Контроли-	СЦ	СЦ	C ₃ H ₆ O,	H ₂ O, CO ₂ ,	$H_2O, CO_2,$	CO	
руемые газы		CΠ ₄	CH ₃ NO ₂	CH ₄	CH_4	CO_2	$\Pi_2 0, C 0_2$

[1] Ayrapetyan V.S. Measurement of absorption spectra for atmospheric methane by a lidar system with tunable emission wavelength in the range 1.41-4.24 μ m // Journal of Applied Spectroscopy. 2009. V. 76. N 2. P. 268–272.

[2] Григорьевский В.И., Садовников В.П., Элбакидзе А.В. Измерения фоновой концентрации метана дистанционным лидаром на километровых трассах в районе Московской области // Журнал радиоэлектроники. 2021. №9. С.1–12.

[3] V. Mitev et. al. Mid-IR DIAL for high-resolution mapping of explosive precursors // Proceeding of SPIE. 2013. V. 8894. P. 88940S-1-88940S-13.

[4] Lambert-Girard S., Allard M., Piché M., Babin F. Differential optical absorption spectroscopy lidar for mid-infrared gaseous measurements // Applied Optics. 2015. V. 54. N 7. P. 1647–1656.

[4] J. Barrientos Barria et al. $3.3-3.7 \mu m$ OPO/OPA optical source for multi-species 200 m range Integrated Path DIfferential Absorption Lidar // Applications of Lasers for Sensing and Free Space Communications. OSA. 2013. P. LTh1B. 4.

[5] D. Mammez et al. Multispecies transmitter for DIAL sensing of atmospheric water vapour, methane and carbon dioxide in the 2 μm region // SPIE Remote Sensing. International Society for Optics and Photonics. 2015. P. 964507-964507-9

[6] Y. Shibata et. al. Development of 1.6 μ m DIAL using an OPG/OPA transmitter for measuring atmospheric CO₂ concentration profiles // Applied Optics. 2017. V.56. N 4. P. 1194–1201

[7] Refaat T. F. et al. Airborne Testing of 2-µm Pulsed IPDA Lidar for Active Remote Sensing of Atmospheric Carbon Dioxide //Atmosphere. 2021. V. 12. N 3. P. 412.

Программное обеспечение для моделирования

лидарного зондирования

Рисунок 1 – Интерфейс программы моделирования лидарного зондирования

[1] Gordon I.E. et al. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transf. 2022. V. 277. P. 1–82. [2] Зуев В.Е., Комаров В.С. Статистические модели температуры и газовых компонент атмосферы – Л.: Гидрометеоиздат, 1986.

Результаты моделирования функции перекрытия лазерного пучка и поля зрения телескопа

1.0 0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

0

0

угол наклона = 0.0 *мрад*

500 1000 1500 2000 2500 3000

500 1000 1500 2000 2500 3000

R, *м*

R. *м*

vгол наклона = 0.2 *мрад*

Ø[мм]: 0.1 0.2 0.3 0.5 1.0

1.0 -

0.8

0.6

0.4

0.2

0.0

1.0 0.8

0.6

0.4

0.2

0.0

0

ŝ

0

w

диаметр пучка 50 мм) [2]

угол наклона = 0.1 *мрад*

500 1000 1500 2000 2500 3000

500 1000 1500 2000 2500 3000

R. *м*

R. м

угол наклона = 0.3 мрад

Результаты полевых испытаний лидара для измерения метана

1 – передающий блок; 2 – приемный блок; 3 – система сбора, накопления и обработки лидарных данных

Рисунок 4 – Схема (а), внешний вид экспериментального образца лидара для измерения метана (б) и результаты измерения метана в полевых условиях (в)

Разработка лидара в волоконном исполнении

Рисунок 5 – Схема лидара для измерения CH₄ в волоконном исполнении

Поиск информативных диапазонов зондирования

а-б) тропическая зона, длина трассы 2000 м; в-г) зима средних широт, длина трассы 500 м

Рисунок 6 – Спектры пропускания атмосферы для лазерных диодов LDS-1650-DFB-1.25G-10/20 (LasersCom, Беларусь, (а, в)) и PL-DFB-1653.7-A-A81-SA-14BF (LD-PD Inc., Сингапур (б, г))

8

Разработка волоконного лидарного измерителя метана

1 – платы питания лазера и лавинного фотодиода, 2 – делитель 99:1, 3 – циркулятор, 4 – приёмо-передающий коллиматор, 5 – сборка из двух коллиматоров и светофильтра, 6 – программируемая логическая интегральная схема Рисунок 7 – Лидар для измерения концентрации метана в оптоволоконном исполнении

Рисунок 8 – Динамика длины волны генерации лазера, зарегистрированная с использованием SHR-IR [Минск] (а), WS UIR [Новосибирск] (б) и лидарные сигналы (в)

9

Результаты моделирования спектров пропускания атмосферы лидарных сигналов

Рисунок 9 – Спектр пропускания атмосферы для ширины линии излучения лазера 5 см⁻¹ (протяжённость трассы 0.2 км, модель ИОА СО РАН)

Рисунок 11 – Результат моделирования лидарного сигнала в информативном диапазоне зондирования H₂O и CO₂

Рисунок 10 – Спектр пропускания атмосферы (Т) в информативном диапазоне зондирования H₂O и CO₂

Таблица 1 – Входные данные для проведения численного моделирования лидарных сигналов при зондировании H₂O и CO₂

Дальность зондирования, км	≤3	
Диапазон длин волн зондирования, нм	2040–2083	
Волновое число, см ⁻¹	4800–4900	
Энергия в импульсе, мДж	4	
Аппаратная функция (AF), см-1	5	
Геометрия трассы зондирования	горизонтальная	
Диаметр приемной апертуры, мм	300	
NEP (эквивалентная мощность шума),	1.10-11	
Вт/Гц ^{0,5}		

10

Двухканальная лидарная система ИК-диапазона для измерения СО₂ и H₂O

1 – лазер, 2 – коллиматор, 3 – приемный телескоп №1, 4 – приемный телескоп №2, 5 – монохроматор/спектрограф М833, 6 – фотодетектор

Рисунок 12 – Трехмерная модель (а) и оптическая схема двухканальной лидарной системы (б)

Создание автомобиля-лаборатории для измерений концентрации парниковых газов

Рисунок 13 – Схема расположения оборудования

	<u></u>		
1 and 1 $1 = 1$ octar is the subsective s	αρακτεριαστικά οροργησβαμας		патопии
		MOONJIDHON JIAOO	paroprin
			1 1

Блок	Прибор/датчик	Измеряемый параметр	Диапазон	Погрешность
		t,°C	-40 + 70	±0,13 °C
Метеоблок	Метеостанция GMX500	U,%	0100	± 2%
	со встроенным	dd, °	0360	± 3°
	компасом и GPS	V, м/с	060	±3 %
		Р, гПа	3001100	±0,5 гПа
Блок газоанализа	Disarra C/1201	CO ₂ , млн ⁻¹	030000	<±0,4 млн ⁻¹
	Ficano 64501	CH4, млн ⁻¹	020	<±0,003 млн ⁻¹
			0500	±2 мкг/м ³
	ОПТЭК Ф-105	О 3, мкг/м ³	5001000	±14 мкг/м ³
			100010000	±7 %
	ОПТЭК	CO xm/x ³	0 50	+20 %
	ОПТОГАЗ 500.4-СО	с.с., мі/м	050	-20 /6

Результаты испытаний автомобиля-лаборатории

a)

б)

Рисунок 14 – Пространственное распределение концентрации CO и O₃ (a), CO₂ и CH₄ (б) полученное в ходе тестового выезда 20.10.2022 г

Результаты испытаний автомобиля-лаборатории

Рисунок 15 – Пространственное распределение концентрации CO₂ и CH₄, полученное между Томском и обсерваторией «Фоновая» 21.10.2022 г

Результаты измерений парниковых газов с использованием автомобиля-лаборатории

а и б – 27-29 июня 2023 г.; в и г – 29-31 августа 2023 г.; д и е – 8-10 ноября 2023 г.

Рисунок 16 – Долготные трансекты концентраций CO₂ и CH₄ полученные на участках маршрута Челябинск->Абатское->Калачинск->обсерватория Фоновая 15

Рисунок 18 – Средние суточные хода концентрации монооксида углерода (а), диоксида углерода (б) на станциях БЭК и «Фоновая» на 10 и 30 метрах 16

Благодарю за внимание!

Садовников Сергей Александрович sadsa@iao.ru